top of page
  • eagleresearchlabs

Could new drug targeting the body clock stall brain cancer?

Abstract

Researchers are currently exploring the potential of a new drug in the fight against brain cancer. The drug targets the circadian rhythm, or “internal clock” of the body, at a cellular level, which stalls the cancer cells’ growth.


Brain and central nervous system (CNS) cancers are aggressive and often resilient to the normal therapies prescribed in these cases, such as chemotherapy and radiotherapy.

Following treatment, only 33.6 percent of these people with CNS cancers survived for five years or longer in the 2007–2013 period.


Over the years, specialists have focused on devising new and much more effective treatments for brain cancer, in an effort to improve the rates of remission and survival.


Now, researchers led by Dr. Satchidananda Panda, from the Salk Institute for Biological Studies in La Jolla, California, have started to experiment with a new drug that has the potential to disrupt the growth of cancer cells without the toxic side effects of traditional chemotherapy agents.


The researchers studied the effect of a drug called SR9009 on brain tumours in a mouse model. Their findings were published yesterday in the journal Nature.


The experimental drug ‘starves’ cancer cells. SR9009 has REV-ERB–independent effects on cell proliferation and metabolism.


The experimental drug ‘starves’ cancer cells


In their study paper, Dr. Panda and colleagues note that the disruption of circadian rhythms — or the internal body clock that regulates our day-to-day biological processes — at cellular level can lead to a higher risk of developing cancer. This, they add, is the case in both humans and mice.


The drug SR9009 acts on a type of protein called REV-ERB, which ensures the correct functioning of circadian rhythms.


The drug is a “REV-ERB agonist,” meaning that it can establish a molecular bond with REV-ERBs, boosting their activity.


The researchers found that the experimental drug leads to the eventual death of cancer cells by impairing their ability to “feed” and grow, which also means that they cannot then replicate and spread further. So, the survival rate of the mice involved in this experiment was increased.


“We’ve always thought about ways to stop cancer cells from dividing,” notes Dr. Panda. “But once they divide, they also have to grow before they can divide again, and to grow they need all these raw materials that are normally in short supply.”


“SR9009 is known to cross the blood-brain barrier,” the researchers write in their paper, meaning that the drug can be injected into the bloodstream rather than administered directly to the brain.


Another important characteristic of this experimental drug is that, while it appears to be as effective as other compounds used in the treatment of brain cancer, it selectively targeted the cancer cells and did not have a collateral toxic effect.


“While SR9009 anticancer activity was similar to the current therapeutic standard for glioblastoma, which is temozolomide, SR9009 did not result in toxicity,” the researchers write.


Drug ‘seemed to work in all types of cancer’


Moreover, the experimental drug’s selective cancer cell-targeting properties are not reduced to fighting glioblastoma alone.


In vitro tests showed that SR9009 could be used to effectively attack other types of cancer cell, including those typical to breast cancer, colon cancer, leukemia, and melanoma, or skin cancer. 

21 views0 comments

Recent Posts

See All

How SR-9009 and the process of autophagy burns fat

SR-9009 (Stenabolic) is a research chemical that is being studied for its potential to induce autophagy, which is the process by which the body's cells break down and recycle old and damaged component

Obesity and Pharmacologic Control of the Body Clock

Abstract Knowledge of the mechanisms that govern mammalian circadian rhythm permits the molecular manipulation of these mechanisms. A recent study showed that pharmacologic intervention results in an

bottom of page